NSK-SD[®] (Nattokinase): Improving circulation & promoting cardiovascular health

Japan Bio Science Laboratory Co., Ltd

1-4-40 Fukushima, Fukushima-ku, Osaka-city, Osaka 553-0003 Japan

What is NSK-SD?

NSK-SD is a, patented, branded, uniquely produced and studied enzyme with fibrinolytic activity, which is isolated from natto, a food made from fermented soybeans. Natto has been consumed as a food for more than 1,000 years and is currently available in almost every supermarket in Japan, and increasingly, health-focused specialty stores in the U.S. Natto is considered a healthy addition to the diet that confers benefits to the cardiovascular system. In 1907, it was discovered that natto contained protease enzyme activity. In 1956 the amino acid sequence of nattokinase was first identified and Japan Bio Science Laboratories first began to conduct investigative clinical work from the early 1980's including demonstrating, the enzyme as having the ability to dissolve thrombi (blood clots) and named it "nattokinase". In addition to fibrinolytic activity, the cardiovascular benefits of nattokinase include reducing elevated blood pressure, improving circulation and normalizing levels of systemic inflammation as measured by C-Reactive Protein (CRP).

This paper focuses on a proprietary product produced by Japan Bio Science Laboratory Co, Ltd of Japan (JBSL), known as NSK-SD[®]. The effectiveness and safety of NSK-SD has been demonstrated in numerous human clinical studies.

Cardiovascular Health Benefits of Nattokinase

- Reduces elevated blood pressure
- Fibrinolytic activity: dissolves blood clots without inhibiting wound healing
- Inhibits platelet & red blood cell aggregation
- Decreases blood viscosity
- Reduces clinical measure of inflammation (CRP)

aboratorv

Table of Contents

What is NSK-SD?1
Development of NSK-SD
Characterization of NSK-SD
Cardiovascular Health Recommendations4
NSK-SD as an Aid to Cardiovascular Health4
Reduction of Hypertension (Blood Pressure)4
Fibrinolytic Activity7
Reduction of Platelet Aggregation, Rouleaux formation and Blood Viscosity10
Inflammation11
Other Health Benefits of NSK-SD
Dental Carries
Nasal Polyp and mucous viscosity12
Bioavailability
Safety
Summary of the Evidence for the Safety of NSK-SD13
Mutagenicity Studies14
Toxicology Studies16
Bacillus subtilis natto17
Allergenicity
MSDS
How NSK-SD differs from competitors' proteins17
Appendix: Blood Clotting Biochemistry & Pharmacology
Table 1: Nattokinase (NSK-SD) Clinical Data19
References

Development of NSK-SD

NSK-SD is extracted from natto, a Japanese food that has been consumed for more than 1,000 years. Natto is made by fermenting cooked soybeans with a particular bacterium: *Bacillus subtilis natto*. The soybeans are fermented at 40 degrees C (104 degrees F) for 14 to 18 hours until the dark drown beans are covered with a sticky, viscous, string-like material. Because of this texture, natto has been called a vegetable cheese. Natto has a slightly musty flavor and characteristic odor.

It was discovered that natto contained protease enzyme activity in 1907, by Dr. S. Swamura. In 1925, Dr K. Oshima reported that the protease degraded fibrin and gelatin. In 1956, Dr. S. Miyake defined the amino acid composition of the enzyme.

The usual serving of natto food is 50 g, which has fibrinolytic activity that has been measured as 2,000 CU. (This measurement is approximate as there are several strains of *Bacillus subtilis natto* that produce varying potencies of enzyme activity.) CU is a measurement of activity compared to the action of plasmin, the endogenous fibrinolytic enzyme. The CU measurement has been replaced with FU activity units with a ratio of 1.33 to 1. Thus, 50 g of natto food has approximately 1500 units of FU activity.

NSK-SD is a serine protease with 275 amino acid residues and a molecular weight of 27,728 Daltons. NSK-SD is a member of the subtilisin family of enzymes and DNA sequencing shows 99.5 and 99.3% homology to subtilisin E and amylosacchariticus, respectively (Nakamura et al. 1992).

Traditional Use

NSK-SD is an enzyme present in a common Japanese food called natto. It has thus been consumed in a food without adverse effect for more than 1,000 years (Sumi et al 1987). According to the Japanese Ministry of Agriculture, Forestry and Fisheries, 125,000 tons of soybeans were used for natto production in 2009 and approximately 150,000 tons of natto (3 million servings) were consumed in Japan in 2010 (MAFF 2011).

Characterization of NSK-SD

NSK-SD is a white, odorless, tasteless, water-soluble, free flowing powder. Its enzymatic activity is measured in Fibrin Degrading Units (FU) and is standardized to an activity level of more than 20,000 FU/g. The recommended intake level is 2,000 FU/day. All vitamin K₂ (which may increase blood coagulation, particularly in patients taking warfarin) has been removed. NSK-SD is produced from non-genetically modified soybeans fermented with a proprietary strain of *Bacillus subtilis natto*. NSK-SD is stable in the pH range of 5.5 to 10 at 25 degrees C for 24 hours. NSK-SD in a soft gel capsule (NSK-II) retains 75 to 80% of activity when exposed to a pH of 2.0, mimicking gastric fluid, for 30 minutes. NSK-SD is stable at 65 degrees C for 1 hour. The optimal fibrinolytic activity occurs around 65 degrees C and pH 10.5. NSK-SD is stable under pressures up to 2000 kg/cm² and can therefore be pressed into tablet form.

NSK-SD is sold in soft gel capsules, known as NSK-II. The capsules contain 100 mg of NSK-SD with a minimum activity level of 2,000 FU. NSK-SD has replaced a previous product called NSK-FD (freeze-dried), which was a less purified product with an activity of 13,000 FU/g.

Cardiovascular Health Recommendations

The American Heart Association website <u>www.heart.org</u> states recommendations for improving cardiovascular health and preventing cardiovascular disease and stroke. In fact they suggest that "prevention is the key to conquering heart disease America's #1 Killer. By making simple changes to diet, exercising, not smoking, managing stress and getting enough sleep and regular checkups, most Americans can dramatically reduce the risk of heart disease and stroke." Previously, the focus on prevention had been to reduce the incidence of cardiovascular events (heart attack or stroke) in those already presenting with risk factors. Now the goal is for everyone to develop healthy habits that preempt the development of cardiovascular risk factors (elevated blood pressure, cholesterol, and fasting glucose).

Cardiovascular disease is associated with many underlying risk factors. Of these, dysfunctional or injured blood vessels are a perfect example. These injured vessels are prone to develop clots (thrombi). Thrombosis is a multi-step process wherein platelets adhere to the damaged vessel wall, secrete stimulatory mediators and start a cascade of biochemical events resulting in a clot. These clots can obscure blood flow, thereby decreasing oxygen supply to the tissues. The result can be heart attack, stroke or peripheral occlusive disease.

General dietary guidelines for cardiovascular health include the intake of fruits, vegetables, fish and whole grains, along with a reduction in sodium, sugar sweetened beverages and saturated fat (Lloyd-Jones et al 2010). Certain dietary interventions have been associated with reducing certain aspects of thrombosis. These foods include protein from soybeans, unsaturated fatty acids in olive oil and fatty fish, garlic, onions, ginger and tomatoes (Phang et al. 2011).

NSK-SD as an Aid to Cardiovascular Health

Natto (the food) and NSK-SD possess many benefits with regards to cardiovascular health. Each will be covered in detail later in this paper. In short though, natto and NSK-SD have been clinically shown to degrade fibrin clots without inhibiting the formation of fibrin from fibrinogen, thus not inhibiting the formation of blood clots. This is important as it means that nattokinase does not inhibit blood clotting in response to injury. NSK-SD has also shown clinically to help reduce elevated blood pressure, improve circulation and to normalize the levels of C-Reactive Protein (CRP) (to be explained later). We will now take a closer look at all of these areas and the clinical research that confirms these statements.

Reduction of Hypertension (Blood Pressure)

Blood pressure control is influenced by the renin-angiotensin hormonal complex. Angiotensinogen, a protein produced by the liver, is transformed in the blood to angiotensin I by the enzyme renin. Angiotensin I, in turn, is converted to angiotensin II by angiotensin-converting enzyme (ACE). Angiotensin II increases blood pressure by constricting blood vessels. Two enzymes that exert control in this system, therefore, are renin and ACE. Inhibition of ACE is a common mechanism for hypertensive medications. However, renin, an enzyme that is released by the kidneys, is proposed to be the rate-limiting factor in the renin-angiotensin system.

Traditional knowledge is that natto in the diet tends to lower blood pressure. It has been suggested that the mechanism for this effect may be the inhibition of ACE (Maruyama and Sumi 1998). However, a recent clinical study found no difference in blood levels of ACE following treatment with nattokinase but did report a decrease in renin activity (Kim et al 2008). Thus, the mechanism whereby nattokinase decreases blood pressure may be through inhibition of renin activity. Two studies from 2014 show positive effects of NSK-SD on blood pressure readings too. The first study lasting 4-weeks compared two different nattokinase formulations, one being NSK-SD 100mg/day and the other being nattokinase (KPX) 100mg + olive leaf extract in which the results showed the superiority of NSK-SD over the other nattokinase formulation and how NSK-SD showed a dramatic reduction in blood pressure comparatively (Lotte 2014). Additionally, in 2014 a randomized double-blind placebo controlled study to evaluate the effects of NSK-SD consumption in subjects with hypertension was carried out. The study lasted 8-weeks showed beneficial changes in both systolic and diastolic pressure in the group taking NSK-SD when compared to the placebo group. (NIS Labs 2014)

Reduced blood pressure and von Willebrand factor: Clinical Study

Seventy-nine healthy subjects of both sexes participated. Subjects either consumed placebo or 100mg nattokinase/d for 8-weeks. 74-people completed the study. Results showed that the consumption of nattokinase was associated with a reduction in both systolic and diastolic BP. The reduction in systolic BP was seen for both sexes but was more robust in males consuming nattokinase. The average reduction in diastolic BP in the nattokinase group from 87 mmHg to 84 mmHg was statistically significant when compared to that in the group consuming placebo, where the average diastolic BP remained constant at 87 mmHg (P<0.05), and reached a high level of significance for males consuming nattokinase, where the average diastolic BP dropped from 86 mmHg to 81 mmHg (P<0.006). A decrease in vWF was seen in the female population consuming nattokinase (P<0.1). In the subpopulation with low plasma renin activity levels at baseline (<0.29 ng/mL/h), an increase was seen for 66% of the people after 8-week consumption of nattokinase (P<0.1), in contrast to only 8% in the placebo group. (Jensen, G. Et al 2016)

Reduction of Hypertension: Animal Study

Nattokinase was demonstrated to decrease blood pressure in Wistar Rats. The animals (400-450 g; male) were administered intra-peritoneal 0.5 ml of a lyophilized extract (80% ethanol; equivalent to 25 mg natto – roughly 0.8 FU total or 2 FU/kg body weight) and blood pressure was measured using the tail artery. The average systolic blood pressure of 6 rats decreased significantly 2 and 3 hours after administration of the natto extract by 12.6% and 13.2%, respectively (both p<0.05). The systolic blood pressure decreased from 166 ±14 mmHg at baseline to 144 ± 27 mmHg after 3 hours (Maruyama & Sumi 1998).

U

Reduction of Hypertension: Clinical Studies

In an open label clinical study, 30g of lyophilized extract (80% ethanol; equivalent to 200 g natto, roughly 6,400 FU) were administered orally for 4 consecutive days to human volunteers with high blood pressure. In 4 of 5 volunteers the systolic as well as diastolic blood pressure decreased (measured in the supine position). The systolic average values decreased by 10.9% from 173.8 \pm 20.5 to 154.8 \pm 12.6 mmHg. The diastolic blood pressure decreased by 9.9% from 101.0 \pm 11.4 to 91.2 \pm 6.6 mmHg (Maruyama & Sumi 1998).

A randomized, placebo-controlled, crossover study was conducted with 20 men and women (ages 18-75 years old) with a variety of disease states (essential hypertension, hyper-coagulable states, auto-immune diseases and diabetes). Half of the study population received 4,000 FU (2,000 FU twice daily of NSK-SD) and the other half received placebo. After 4 weeks the groups crossed over and received the alternate intervention. There was a significant decrease in systolic blood pressure compared to baseline for the NSK-SD group (p=0.039) and no significant change in diastolic blood pressure compared to baseline. The placebo treatment did not cause any change in systolic or diastolic pressure (Krishnan Medical Association SC. 2003).

Another, more definitive, randomized, double blind, placebo-controlled study was conducted with 73 hypertensive participants (20-80 years-old) with an initial systolic blood pressure between 130-159 mmHg. The participants received NSK-SD (2,000 FU per day) or placebo for 8 weeks. After 8 weeks of treatment there were significant decreases in systolic and diastolic blood pressure compared to placebo (both p<0.05). Both treatment and placebo groups had some reduction in blood pressure, with the net decreases for the treatment group being 5.5 mmHg in systolic blood pressure and 2.8 mmHg in diastolic blood pressure. There was also a net decrease in plasma renin activity (1.17 ng/ml/hr) in the treatment group compared to the control group (p<0.05). There was no significant difference in ACE levels between the two groups (Kim et al 2008).

Clinical Study comparing NSK-SD and KPX Bio-Tech nattokinase on Blood Pressure

42 subjects of high blood pressure risk (Systolic 130~159mmHg) were split into two groups of 21 subjects. One group took 100mg/d of NSK-SD (Lotte product) and the other group took 100mg/d KPX + olive leaf extract over a 4-week period. Results from the NSK-SD group showed a decrease in Systolic from 143.74 to 130.19 or -13.55 +/- 8.43 and a decrease in Diastolic pressure from 93.55 to 84.91 or -8.64 +/- 9.10 by the end of the 4-week period. Comparatively, the KPX product saw changes in Systolic pressure 141.81 to 134.95 or -6.86 +/- 8.19 and decreased diastolic pressure from 90.19 to 88.98 or -1.21 +/- 8.38 in the same 4-week period. The conclusion shows the nattokinase product NSK-SD provided a dramatic reduction in blood pressure compared to the nattokinase product by KPX. (Jehun, K.et al)

Fibrinolytic Activity

NSK-SD has been shown to degrade fibrin clots both directly and indirectly. Clot lysis assays indicate nattokinase degrades fibrin directly with activity comparable to plasmin. Kinetic assays

suggest nattokinase is 6 times more active than plasmin in degrading cross-linked fibrin. NSK-SD degrades fibrin indirectly by affecting plasminogen activator activity. NSK-SD does not directly stimulate plasminogen activator activity. Instead there are suggestions that it degrades plasminogen activator inhibitor 1 (PAI-1), which is the primary inhibitor of tissue-type plasminogen activator (t-PA). Importantly, NSK-SD does not inhibit the formation of fibrin from fibrinogen, thus it does not inhibit the formation of blood clots in response to injury.

Human clinical studies have demonstrated that NSK-SD has the ability to decrease euglobin (clot) lysis time (ELT) up to 8 hours after oral intake of a dose of natto estimated at 6,000 FU. In addition, euglobulin fibrinolytic activity (EFA: lysis area on a fibrin plate) was increased significantly up to 12 hours following administration. NSK-SD has also demonstrated the ability to dissolve experimentally induced thrombi in animal experiments using dogs and rats. In addition, nattokinase has been shown to prevent thickening of vascular intima in a rat model. Details of the results summarized above are given below.

Fibrinolytic Activity: In Vitro

Initially, the fibrinolytic activity of natto was demonstrated when the vegetable cheese was applied directly to fibrin. The fibrinolytic activity was approximately 40 CU (plasma units)/g wet weight and the isolated protease was named NSK-SD (Sumi et al 1987). Fibrinolytic activity of 40 CU is equal to 30 FU (Fibrin Degradation Units). Further experiments using a clot lysis assay (cross-linked fibrin) revealed that purified NSK-SD had 4 to 5 times the fibrinolytic activity of plasmin. NSK-SD cleaved fibrinogen and fibrin, producing similar degradation products to those produced by plasmin.

Test preparations of pure nattokinase and capsule contents (bulk powder plus excipients) were tested in a series of in vitro experiments in human plasma. Test concentrations (0.2 to 1.6 FU/ml) were calculated as twice the plasma concentration of the highest recommended dose (4,000 FU) assuming 100% bioavailability in a 5-liter average blood volume. In this system, the functional ability of fibrinogen to form fibrin in response to thrombin was not altered by concentrations of 0.2 to 0.8 FU/ml nattokinase. Only at the highest concentrations of 0.8 and 1.6 FU/ml did nattokinase reduce the quantity of fibrinogen. This finding suggests that nattokinase will not affect the body's ability to respond to tissue wounding, when taken at the usual intake levels (Ero and Lewis 2008).

Unlike urokinase, NSK-SD does not stimulate fibrinolysis by directly stimulating plasminogen activator activity (Fujita et al. 1993). Instead, NSK-SD is reported to degrade an important inhibitor of plasminogen activator activity. Plasminogen activator inhibitor 1 (PAI-1) is the primary inhibitor of tissue-type plasminogen activator (t-PA). NSK-SD cleaved active recombinant PAI-1 into low molecular weight fragments at concentrations of 0.02-1.0 nM (half maximal activity at 0.1 nM). In reducing the activity of the inhibitor, NSK-SD enhanced t-PA induced lysis of the fibrin clot in a dose-related manner (0.06-1 nM) (Urano et al. 2001). In contrast with the above study, another group conducting an in vitro test in human plasma reported that NSK-SD (0.8 and 1.6 FU/mI) slightly increased the presence of PAI-1 (Ero & Lewis 2008).

Fibrinolytic Activity: Animal Studies

The fibrinolytic activity of NSK-SD was tested in dogs using an experimental thrombosis model in which bovine fibrinogen and thrombin were infused into the animals. Three dogs were treated with NSK-SD and six dogs were given placebo, serving as controls. Four capsules of NSK-SD (250 mg /capsule; 2.13 CU/mg; calculated to be a total of approximately 1,600 FU) or placebo were given orally. Angiograms were obtained before induction of the thrombus and from 2.5 to 24 hours afterwards. In the control group, there was no sign of lysis 18 hours after induction of thrombosis. By contrast, the dogs treated with NSK-SD had complete restoration of blood circulation within 5 hours (Sumi et al 1990).

The fibrinolytic activity of NSK-SD was also tested in a rat model, in which a thrombus was formed in the common carotid artery by damaging the endothelial cells of the vessel wall with acetic acid. In this model, urokinase or t-PA (given intravenously (iv), constant rate, 20 minutes) restored blood flow (45%) over 60 minutes. There was no restoration of blood flow with saline. NSK-SD was tested in this model in doses of 0.02, 0.04 and 0.12 mcmol/kg (iv) and its activity was compared to plasmin and elastase. NSK-SD caused a dose-dependent recovery of blood flow (18, 42 and 62%) after 60 minutes. When the activity of NSK-SD and plasmin were compared on a molar basis, NSK-SD was 4-fold more efficient than plasmin in restoring blood flow. Elastase did not restore blood flow. Degradation of cross-linked fibrin was determined through the presence of D-dimer gamma-gamma chain remnants in the plasma. D-dimer remnants were detected in the blood after treatment with NSK-SD as well as with urokinase and t-PA. The feasibility of using NSK-SD therapeutically for fibrinolysis depends upon its ability to digest fibrin without destroying fibrinogen. Values for residual plasma fibrinogen following administration of a dose of 0.12 mcmol/kg of plasmin, elastase or NSK-SD were 33, 42 and 29%, respectively. When the dose of NSK-SD was reduced by one-third to the approximate activity level of plasmin, the residual fibrinogen level was 53%. This is a greater amount of residual fibrinogen than the 33% remaining after treatment with plasmin at a comparable activity level. These results imply that NSK-SD may be safer than plasmin at an appropriate dose level (Fujita et al. 1995a).

Thickening of vascular intima is thought to be part of the progression of arteriosclerotic plaques that can lead to heart attack and stroke. The ability of NSK-SD to inhibit the progression of intimal thickening was tested in a rat model. In this model, endothelial damage to the femoral artery was induced by intravenous injection of rose-bengal followed by irradiation with transluminal green light. Twenty-one days after endothelial injury, significant intimal thickening was observed. Administration of NSK-SD (50 or 100 CU/animal, calculated as 38 and 75 FU/animal) was started 3 weeks before endothelial injury and then continued for another 3 weeks following the injury. NSK-SD reduced the development of intimal thickening from an area of 1.28 ± 1.14 mm² in the control group to 0.79 ± 0.60 mm² and 0.71 ± 0.27 mm² in the low- and high-dose groups, respectively. The difference between intimal thickening in the control group and the high-dose group was significant (p<0.05). When the intima/media ratios were compared for the three groups, both treatment groups were different from the control group (p<0.05). There was no difference between the control and treatment animals in the time taken to develop occlusion following injury. However, differences were observed in the morphology of the mural thrombi (thrombi that adhere to the wall of a blood vessel usually occurring in large vessels such as the heart and aorta. These types of thrombi can restrict blood flow but do not usually block it entirely.)

In the control group, the center of the vessel reopened with mural thrombi attached to the vessel walls. In the NSK-SD groups, thrombi near the vessel walls showed lysis and most thrombi were detached from the vessel wall surface. The control group had thrombi attachment lengths measuring 858 ± 430 mm at 8 hours after injury. NSK-SD reduced the attachment length in a dose-dependent manner. The attachment length for the high-dose group was 173 ± 105 mm, significantly shorter than the control group (p<0.05). Bleeding times for the three groups were not different (Suzuki et al. 2003).

Fibrinolytic Activity: Clinical Studies

Preliminary evidence that nattokinase would have an effect in humans was reported by Dr Sumi and co-workers in 1990. Twelve healthy volunteers (men and women, 21-55 years old) were given a single dose of 200 g natto (estimated to be 6,000 FU) or a control of boiled soybeans in a crossover single-dose study with a 2-week interval. Blood was collected from 2 to 24 hours after ingestion. Euglobin (clot) lysis time (ELT) decreased significantly 2, 4 and 8 hours after intake of natto compared to the soybean control. Euglobulin fibrinolytic activity (EFA) was determined by measuring the lysis area on a fibrin plate. EFA increased significantly 2, 4, 8 and 12 hours after intake of natto compared to the soybean control. In another experiment the volunteers were given 2 enteric-coated capsules containing nattokinase (650 mg/capsule; 2.13 CU/mg) 3 times a day following meals (calculated to be a total of 3,000 FU per day) for 8 days. Blood was collected each day. EFA increased gradually but not significantly over that time. The degradation products from fibrin and fibrinogen (FDP) in the serum were also measured. The FDP levels in the serum spiked on the first day and then decreased slowly over the 8 days. The levels were significantly different from baseline on days 1 through 4 (Sumi et al 1990).

In another study, a single oral dose of 30 g lyophilized natto (ca. 200 g original wet weight; estimated to have 6,000 FU) was given to 5 volunteers (51-86 years old) and blood samples were taken from 2 to 24 hours after intake. Fibrinolysis was observed for 4 to 8 hours after intake. EFA increased significantly after 4 hours and FDP measurements increased significantly 6 and 8 hours after administration. EFA increased from 1.9 ± 2.7 mm² at baseline to 4.5 ± 3.3 mm² after 2 hours, 13.3 ± 7.2 mm² after 4 hours and 8.7 ± 7.4 after 8 hours. The FDP levels at baseline, 6 hours and 8 hours were 0.75 ± 0.52 , 5.50 ± 2.74 and 2.75 ± 1.37 mcg/ml, respectively. The FDP was further decreased following additional intakes on the 2nd and 4th day (Sumi et al. 1996;Sumi and Maruyama 1998).

A double blind, placebo-controlled study with 30 adults (men and women; average age 59) explored the administration of NSK-SD to patients taking warfarin for maintenance purposes. The theory behind the combination of the two agents was that the addition of NSK-SD might help stabilize the fibrinolytic effect of warfarin. The treatment group was given 2 capsules (1700 FU) nattokinase (NSK II) per day after breakfast for 26 weeks. As a result, there were significantly decreased rate-of-changes in prothrombin and prothrombin-INR compared to placebo (p<0.05). Treatment was especially effective for those over 60 years of age. Activated partial thromboplastin time and prothrombin time were closer to reference values compared to the placebo group after 4 months (p<0.05). In addition, lower rates of change were observed for activated partial thromboplastin time, prothrombin time, prothrombin-INR time (Ninomiya 2006).

Another study done with dogs that were administered nattokinase orally with experimentally induced thrombosis, and lysis of the thrombi was observed by angiography. The results obtained suggest that nattokinase represents a possible drug for use not only in the treatment of embolism but also in the prevention of the disease. (Sumi 1990)

Reduction of Platelet Aggregation, Rouleaux formation and Blood Viscosity

In vitro experiments and human studies suggest that nattokinase may improve blood flow, decrease blood viscosity, reduce the stickiness of red blood cells and inhibit platelet aggregation.

RBC Aggregation; Blood Viscosity: In vitro

The effects of NSK-SD on red blood cell aggregation and blood viscosity were measured in an in vitro experiment. Blood samples were incubated with NSK-SD in concentrations of 15.6, 31.3, 62.5 and 125 activity units/ml, resulted in 21.9%, 25.9%, 49.7% and 62.0% inhibition of red blood cell aggregation, respectively, compared to the control. NSK-SD reduced blood viscosity at lower shear rates but there were no changes in viscosity at higher shear rates (Pais et al. 2006).

Platelet and RBC Aggregation: Case-studies

The effect of NSK-SD on platelet aggregation was determined in 4 subjects given a dose of 4,000 FU. Blood was drawn and platelet aggregation was measured ex-vivo before and after administration of NSK-SD. Aggregation in platelet-rich plasma was induced with either collagen (1 μ g/ml) or ADP (2 μ M). ADP-induced aggregation was inhibited by approximately 50% by the blood from three men, 31, 34 and 59 years old, taken 6 hours after administration of NSK-SD. The same blood samples had little effect on collagen-induced aggregation. Another individual's blood, from a 39-year-old male, demonstrated 50% inhibition of collagen-induced aggregation (12 hour blood sample), along with a smaller effect on ADP-induced aggregation (Takaoka 2005).

NSK-SD in a dose of 2,000 FU/day for 7 days was given to two subjects with red blood cells that were determined to be in active rouleaux formation (red cell stacking) by microscopic examination. The red blood cells were examined before treatment, after 1 week of treatment and then 3 weeks later. One subject was a 35-year-old male smoker, and the other a 42-year-old female who was a non-smoker. Treatment with NSK-SD returned the red blood cells to normal in both cases after 1 week of treatment. Three weeks after discontinuing treatment there were signs of the red blood cells returning to their original rouleaux state. However, they had not returned to their baseline condition (Takaoka 2005).

Reduction of Blood Viscosity: Clinical Study

The effect of NSK-SD on blood flow was studied in a placebo-controlled crossover clinical study with 15 healthy subjects aged 30-49 years old (7 men and 8 women). The participants were given 3 capsules NSK II (2,000 FU) in a single dose or placebo. There was a 2-week washout period before switching treatments. Blood flow was measured using the PeriScan PIM II method. In the NSK-SD group there was a significant increase in blood flow in the right and left middle fingers 80, 120 and 180 minutes after intake (p<0.01). Compared to placebo there was a significant effect 180 minutes after intake (0.42 \pm 0.08V compared to 0.10 \pm 0.11V; p=0.034). The NSK-SD group also had an increase in blood flow in the participants were subdivided according to their BMI, those with a BMI over 23 treated with NSK-SD had a statistical increase in blood flow compared to those given placebo (p=0.046)(luchi et al 2006).

Inflammation

Recent research suggests a role for of inflammation as a key pathogenic mechanism in cardiovascular disease. The American Heart Association recommends C-reactive protein (CRP) as an independent clinical marker for inflammation and cardiovascular disease risk (Pearson et al. 2003). Taking a closer look at the clinical research done with NSK-SD we can see the benefits it will provide for those with concerns about this cardiovascular risk factor.

A clinical study suggests that nattokinase has anti-inflammatory activity in subjects with levels of C-reactive protein (CRP) indicative of risk for cardiovascular disease. CRP is an acute-phase protein that is recognized as the most characterized biomarker for inflammation. In this acute study, 18 subjects, with three or more documented cardiovascular risk factors, took one dose of 100 mg NSK-SD. Blood was drawn before and up to 24 hours post-dose. CRP levels have been divided into three categories of low, moderate and high levels of risk for cardiovascular disease as follows: <1 mg/L, 1-3 mg/L and 3-10 mg/L. The subjects varied in their baseline CRP levels, including individuals in all three categories. Mean CRP levels decreased progressively for 12 hours post-dose; from $11.6 \pm 14.6 \text{ mg/L}$ at baseline to $8.0 \pm 9.7 \text{ mg/L}$ at 12 hours. After 24 hours the mean CRP levels rebounded to $10.7 \pm 14.1 \text{ mg/L}$. When the subjects were divided into subgroups according to baseline CRP levels, it was evident that the effect from NSK-SD was greatest in those with the most elevated baseline levels. For example, a single subject with an initial CRP level of 9.9 mg/L had a reduction of 72% at 24 hours post-dose. Three subjects with CRP levels of 3 to 10 mg/L at baseline had an average reduction of 2.8 mg/L at 24 hours postdose. The study did not include a sufficient number of subjects to demonstrate a statistically significant effect (Jeske et al 2011).

Lipid Levels

A randomized, double blind, placebo-controlled study included subjects with primary hypercholesterolemia (total cholesterol >200 mg/dl, triglycerides <350 mg/dl and blood pressure <180/110 mmHg) without any other metabolic disorders. Thirty adult men and women (mean age 53.2 ± 9.87) received NSK-SD (4000 FU) or placebo twice daily (total 8000 FU/day) for 8 weeks. All subjects were instructed to follow a low-cholesterol diet. There were no significant

changes in lipid levels from baseline over time in the placebo group. The NSK-SD group had greater reductions in total cholesterol than the placebo group, with 6 of the 15 subjects (40%) with cholesterol levels now <200 mg/dl after 8 weeks of treatment (compared with 2 of 14 in the placebo group. There were also greater reductions in high-density lipoprotein cholesterol (HDL-C) and low-density lipoprotein cholesterol (LDL-C) in the NSK-SD group compared to placebo. However none of these differences reached statistical significance (Wu et al. 2009).

Other Health Benefits of NSK-SD

Dental Caries

The effect NSK-SD has on the reduction of biofilm formation by two species of streptococci known to increase production of water-insoluble glucan, which promotes adhesion to the tooth surface, and the aggregation of bacterial cells within the biofilm. The findings of the study suggest that the inhibition of biofilm by NSK-SD is based on the interference with key enzymes in water-insoluble glucan production. (Narisawa et al 2014)

Effects of Nattokinase on nasal polyp tissue and mucus viscosity

This study examined the effects of nattokinase on nasal polyp tissues, pieces of nasal polyps were incubated either with saline or NSK-SD (10e1000 FU/ml) at 37°C for 24 h. To examine the effects of NSK-SD on nasal discharge and sputum from patients with chronic rhino-sinusitis with nasal polyps (CRSwNP) and asthma, respectively, were incubated with NSK-SD solution at 37°C for 1 h. NSK-SD effectively shrinks the nasal polyp tissue through fibrin degradation. It was also found that the viscosity of the nasal discharge and sputum from patients with CRSwNP and asthma, respectively, was significantly reduced by incubation with NSK-SD solution. NSK-SD may be an effective alternative therapeutic option in patients with CRSwNP and comorbid asthma by causing fibrin degradation. (Takabayashi, T et al 2017)

Bioavailability

The bioavailability of NSK-SD was demonstrated in a rat study that measured transport of NSK-SD across the intestinal tract. A dose of 80 mg purified NSK-SD/kg was administered intraduodenally to the animals and blood was drawn at intervals. NSK-SD was detected in the plasma 3 and 5 hrs. after administration. In addition, a half-hour after administration of nattokinase, fibrinogen degradation products were measured in the plasma. Coagulation time, determined as plasma re-calcification time, was prolonged compared to baseline at the 3 and 5 hour time points following administration of NSK-SD (Fujita et al. 1995b).

A follow-up pharmacokinetic study was conducted with 11 healthy adults (male and female, ages 21-65 years old) who took a single dose of NSK-SD (100 mg, 2,000 FU). Blood was drawn before and up to 48 hours after ingestion of the NSK-SD. The presence of nattokinase in serum was detected via an ELISA assay using a rabbit polyclonal anti-NSK-SD capture antibody. The peak plasma concentration occurred at 13.3 ± 2.5 hrs. post-dose. NSK-SD was significantly increased in serum from 2 to 24 hours post-dose compared to baseline (p<0.05) (Ero et al 2011).

Safety

Summary of the Evidence for the Safety of NSK-SD

NSK-SD is an enzyme present in a common Japanese food called natto. It has thus been consumed as a food without adverse effect for more than 1,000 years. NSK-SD, produced by JBSL, is a product that has been tested for safety in a number of studies elaborated below. NSK-SD was demonstrated to be non-mutagenic in the Ames assay with 5 strains of bacteria and in a chromosomal aberration study conducted in CHL/IU cells. NSK-FD and NSK-SD have been found to be non-toxic in a series of rodent studies with administration of a single dose and repeat dosing for 28 and 90 days with a dose of 20,000 FU/kg. The LD₅₀ was determined to be more than 20,000 FU/kg body weight (more than 1,000 mg/kg).

The safety of NSK II has been tested in a randomized, double blind human clinical study with 31 healthy men and women given a dose of 3 capsules per day (2,000 FU/day) for 4 weeks. The safety of NSK-SD has also been tested in combination with heparin in acute stroke victims and in combination with warfarin in those taking it as a maintenance prophylactic. In both these studies NSK-SD was safely administered along with the other fibrinolytic agents.

In conclusion, NSK-SD appears to be safe to take at the recommended dose. However, it would be prudent for those who are taking other fibrinolytic agents, or have a bleeding disorder, to seek the advice of their physician before taking NSK-SD.

Below you will find the summaries of the clinical studies evaluating multiple areas around the topic of safety.

Safety Study of large doses of nattokinase (NSK-SD)

JBSL conducted a study with 5 males and 6 females between 20 and 46-years of age who took food containing NSK-SD for 4-weeks to evaluate safety. The food contains NSK-SD (one capsule contains 36.8mg) at a recommended dose of 15 capsules per day or 552mg per day. The results showed one adverse event of constipation, which was temporary and did not appear again in the continuation of the test. It was later described as not related to the food NSK-SD and raises little reason for concern. In summary, the results show there was no problems in the safety of the intake of food contain NSK-SD with 15 capsules or 552mg per day for the 4-weeks of research. (Kowatari, Y 2015)

In another study, the safety of NSK II was tested in a randomized, double-blind human clinical study with 31 healthy men and women (20-64 years old; BMI between 18 and 28) (Ogasawara et al. 2006). Nine volunteers (5 men and 4 women) took a placebo and 22 volunteers (10 men and 12 women) took NSK II. The dose was three capsules (2,000 FU) per day for 4 weeks followed by a 2-week observation period. The volunteers visited the clinic at the beginning of the study, after 4 weeks of treatment and then 2 weeks after that. During visits to the clinic a health interview was conducted during which body weight, blood pressure and pulse rate were measured. In addition, blood was taken and urine was collected. Subjective symptoms were noted in a daily diary. No significant adverse effects were reported for either group. Mild

adverse events reported for the placebo group were diarrhea (4 individuals) and back pain (1 individual). Mild adverse effects reported for the treatment group were diarrhea (3 individuals), common cold (2 individuals), constipation (1), pimples (1), stomach pain (1), menstrual cramps (1), constipation (1), and headache (1). Body weight increased by a small amount in both the placebo and treatment groups and it was not considered to clinically relevant. There were also minor changes in hematological profiles in both groups that were not deemed clinically significant. There was no effect on blood pressure or pulse and no significant changes in urine analysis. The researchers concluded that taking 3 capsules daily of NSK II for 4 weeks is safe. (Ogasawara2006)

Safety when administered to stroke patients

An open label study evaluated the safety of NSK-SD as an additional oral fibrinolytic agent for those who had suffered a stroke. The study included 12 adults (men and women; average age 53.3) who presented to the hospital in a conscious state with acute mild to moderate ischemic stroke of non-cardiac origin. All patients were administered heparin s.c. (7,600 IU/day) and an anti-platelet drug (low dose aspirin 150 mg-325 mg or Clopidogrel). They were also treated for 7 days with NSK-SD (6,000 FU/day; 3 doses of 2,000 FU). The subjects were then monitored for 3 months (90 days). No deaths occurred during the course of the study. There were no reported incidents of hemorrhagic transformation of the infarct as confirmed by CT scan. The outcomes of the patients were evaluated using three internationally recognized scales: National Institute of Health Stroke Scale, Modified Rankin Scale and Barthel Index. According to these scales, 5 patients had an overall favorable response. Coagulation and fibrinolytic assays were performed on days 1, 2 and 7. Significant changes compared to day 1 were are follows: bleeding time increased on day 7, clotting time increased on days 2 and 7, prothrombin time decreased on day 7, activated partial thromboplastin time decreased on day 2, and D-dimmer levels decreased on days 2 and 7. There were three adverse events that may possibly have been attributed to nattokinase: 1) prolonged activated partial thromboplastin time, 2) moderate hematemesis and 3) an abnormal liver function test. All of these events were temporary. The study authors declared that the study showed that nattokinase could be safely administered to stroke patients as an adjunct to standard medical treatments (Shah et al. 2004).

Safety when taken with Warfarin

A further study explored the safety of the administration of nattokinase to patients taking warfarin for maintenance purposes. This was a double blind, placebo-controlled study with 30 adults (men and women; average age 59). The treatment group was given 2 capsules (1700 FU) nattokinase (NSK II) per day after breakfast for 26 weeks. There were no adverse effects reported due to the combination of the two agents and the authors suggested that parallel administration of NSK-SD and warfarin may be possible (Ninomiya 2006).

Evaluation of skin-irritating propensity of NSK-SD on Scarified Skin

A study conducted by JBSL on 10 adults to evaluate the skin-irritating potential of NSK-SD on scarified skin compared to saline solution. The results showed that at the end of 72-hour period

for testing, NSK-SD showed a greater effect on the skin than that of the saline control, but the effect was still in the range of a low irritation potential. (Shelanski, J., Shelanski, S. 2018)

Determination of the irritating and sensitizing properties of the fermented soybean extract "NSK-SD" on human skin

This study was designed to identify and characterize the skin-damaging properties that NSK-SD can be induced to exercise under the conditions of a modified skin patch procedure. The results show that NSK-SD had neither a clinically significant skin irritant nor sensitizer effect. It also showed that NSK-SD is not contraindicated for use in repeated application on human skin under conditions appropriate for such products. (Shelanski, E., Nicholson, J. 2018)

Chorioallantoic Membrane Vascular Assay (CAMVA-14 Day) and Bovine Corneal Opacity and Permeability Test (BCOP)

This study was conducted to determine the potential for ocular irritation of NSK-SD at a concentration of 5%, using an improved Chorioallantoic Membrane Vasculary Assay (CAMVA) and Bovine Corneal Opacity and Permeability Test (BCOP). The results of this test showed 5% NSK-SD to be a mild irritant to the eye.

Mutagenicity Studies

NSK-SD was demonstrated to be non-mutagenic in the Ames assay with 5 strains of bacteria and in a chromosomal aberration study conducted in CHL/IU cells. The mutagenic potential of nattokinase (20,000 FU/g) was tested in five strains of bacteria: *Salmonella typhimurium* TA98, TA1537, TA100, TA1535 and *Escherichia coli* WP2uvrA. Nattokinase was tested at 6 dose levels, the top level being 5,000 mcg/plate. Negative and positive controls were included. Positive controls included: AF-2 (2-(2-furyl)-3-(5-nitro-2-fyryl) acrylamide, 9-aminoacridine and sodium azide, as well as 2-aminoanthracene with metabolic activation (S9 liver homogenate enzymes). A dose ranging study, from 5,000 mcg/plate to 15.5 mcg/plate revealed neither mutagenicity nor growth inhibition. The main test using doses of 5,000µg to 156µg/plate did not reveal any colony counts exceeding 2 times the negative control at any dose level (Fuji Biomedix. 2003a).

Tests for cell growth inhibition and chromosomal aberration were conducted using CHL/IU cells originating from the lung of a female Chinese hamster. NSK-SD (20,000 FU/g) was found to inhibit cell growth abruptly at 0.156 mg/ml and higher concentrations. The chromosomal aberration test was performed at concentrations lower than those that caused inhibition of cell growth. NSK-SD was incubated with the cells for 6 hours (short term) with and without metabolic activation (S9) and for 25 hours (long term). The period of 25 hours was selected as it is 1.5 times the cell cycle for the CHL/IU cells. The chromosomal aberration test was conducted short term without metabolic activation at three doses (0.156, 0.110 and 0.078 mg/ml) and with metabolic activation at three slightly lower concentrations. Both positive and negative controls were included. The results of the experiments were that chromosomal aberration was observed at less than 5% at all dose-levels and there were no dose-related trends. The

researchers concluded that nattokinase did not produce chromosomal aberrations in CHL/IU cells at the concentrations tested (Fuji Biomedix. 2003b).

Toxicology Studies

Toxicology assessment of nattokinase derived from Bacillus Subtilis var.natto

NSK-SD, was well tolerated in humans at a dose level of 10 mg/kg-day for a duration of 4 weeks, and the NSK-SD-producing bacteria, B. subtilis (natto), was not pathogenic, infective, or toxic after a single oral dose of 7.55 _ 108 CFU to male and female ICR-strain SPF mice. NSK-SD is not genotoxic in vitro and did not cause adverse effects in male and female SD rats following oral administration of single or repeated doses, up to and including the limit doses of 2000 mg/kg and 1000 mg/kg-day, respectively. Based on the present findings, the male and female rat NOAEL for 90-day oral exposure to nattokinase derived from B. subtilus natto is 1000 mg/kg per day, which may be biologically scaled to a human equivalent NOAEL of approximately 250 mg/kg-day based on methods described by U.S. EPA (2011). (Lampe, B., et al 2015)

Acute Single-Dose Study

NSK-FD freeze-dried powder (approximately 10,000 FU/g) was tested for toxicity in Sprague-Dawley rats given a single oral dose. A group of 10 rats (5 male and 5 female) were given 2,000 mg (20,000 FU) /kg bodyweight and another group, with the same number of animals, were given placebo. The animals were observed for 14 days and at the end of that time they were examined for gross pathology. The study methodology was based upon guidelines established by the Japanese Pharmaceutical Ministry of Health and Welfare (1997). No deaths occurred as a result of treatment. One day after dosing, diarrhea was observed in 2 males and soft stools in 3 males and all females. No abnormalities were observed in the remainder of the 14 days. Normal bodyweight gains proceeded during the observation period. No abnormalities were observed at necropsy (BILIS 1999).

Repeat-Dose 28-Day Study

A repeat-dose study of 28 days was conducted using Sprague-Dawley rats. A dose of 167 mg/kg/day NSK-SD (20,000 FU/g NSK-SD; 3,340 FU/kg bw) was administered orally to 6 males and 6 females. Another group, with the same number of animals, was given placebo. The amount of NSK-SD was calculated as being equivalent to 100 times the usual intake of natto (50 g) taken by a 60 kg person. The animals were observed for clinical signs, body weight, food consumption, urinalysis and ophthalmological health. The study methodology was based upon guidelines established by the Japanese Ministry of Health and Welfare (1997). At the end of 28 days the animals were bled for hematological and blood chemistry analysis, as well as euthanized for necropsy and histopathological examination. No toxic effects were attributed to nattokinase (Fuji Biomedix. 2002).

Repeat-Dose 90-Day Study

A repeat dose of 90 days (13 weeks) was also conducted using Sprague-Dawley rats. This study included three oral doses of 100, 300 and 1000 mg/kg/day NSK-SD (21,900 FU/g) and also

included a control group. The 4 groups of animals consisted of 24 animals each: 12 males and 12 females. The study methodology was based upon guidelines established by the Japanese Ministry of Health and Welfare (1997). At the end of the study there were no deaths, no NSK-SD-related changes in clinical signs, body weight, food consumption, ophthalmological health, urinalysis (including water consumption), hematology, blood chemistry or pathology (Bozo Research Center 2004).

Bacillus subtilis natto

The safety of the bacteria used to make natto, Bacillus subtilis, was tested in mice (ICR-strain; 5weeks old). A single oral inoculation of control or 7.55 x 10⁸ CFU were given to two groups of 10 animals each (5 males and 5 females in each group). The mice were observed for 14 days after inoculation. As a result, no deaths occurred, there were no abnormalities in general health, body weight, no treatment-related abnormalities in the histopathology examination during autopsy and no bacteria in any of the tissues examined during autopsy. The researchers concluded that the bacteria used in the production of NSK-SD held no potential for infectivity, pathogenicity or toxicity (Japan Biological Science Inc. 2003).

Allergenicity

NSK-SD is derived from soybeans, which as a potential allergy-provoking ingredient must be declared as such in labels. However there is no soy left in the final NSK-SD product.

SDS

A Safety Data Sheet for NSK-SD is available and it describes the material as not having a Hazards Classification.

How NSK-SD differs from competitors' proteins

The characteristics of nattokinase are dependent on the strain of the bacteria and the characteristics of the soybeans used to produce it, as well as the industrial processing techniques. JBSL has discovered and patented a strain of *Bacillus subtilis natto* that produces maximal yield and potency of nattokinase when exposed to a select soybean crop using proprietary processing and growth techniques.

The distinctiveness of nattokinase products can be described with physical characteristics of the protein, activity of the protein and vitamin K₂ content. Several competitors' products were compared to NSK-SD and found to have different characteristics.

Proteins such as nattokinase can be characterized by mass, charge and purity using gel electrophoresis. Other nattokinase products were compared to NSK-SD using several gel electrophoresis techniques (SDS-PAGE, IEF and 2-DIGE). The SDS-PAGE run depicted differences in the molecular weight and the IEF revealed differences in electric charge (pl). The 2-DIGE compared the proteins in the same gel using fluorescent dyes. The results show that the molecular weights and pl's of the competitors' products were different from that of NSK-SD. These results suggest that the proteins are different. These physical differences could result in functional differences.

The functional (enzymatic activity) profile of the nattokinase in NSK-SD was also compared to that of other nattokinase products. Enzymatic degradation products created by incubating the nattokinases with oxidized insulin B-chain protein at 37°C were characterized using HPLC. The results showed different degradation patterns of the oxidized insulin B-chain with different products. Another difference between NSK-SD and other products was the amount of fibrinolytic activity. In addition, NSK-SD has no vitamin K₂ content, whereas competitors' products showed measureable amounts of vitamin K₂.

Appendix: Blood Clotting Biochemistry & Pharmacology

Clotting mechanisms

Blood coagulation or blood clotting is the transformation of blood into a solid gel called a clot or thrombus. The clot consists of a lattice of a protein polymer known as fibrin in combination with activated platelets. Clotting occurs in response to injury in the blood vessel.

Blood clots are produced as a result of a complex cascade of biochemical reactions. At each step of the cascade, an inactive plasma protein is converted to an enzyme or coenzyme, which in turn catalyzes the generation of the next enzyme in the sequence. At the end of the clotting cascade, the plasma protein prothrombin is converted to the enzyme thrombin. Thrombin causes several polypeptides to be split from fibrinogen. The fibrinogen remnants then bind to each other to form fibrin. Fibrin is strengthened by cross-linking caused by an enzyme called factor XIIIa.

Two pathways can initiate the formation of fibrin: the intrinsic pathway in which everything needed is in the blood and the extrinsic pathway in which a cellular component (thromboplastin, also called tissue factor) is needed. The intrinsic pathway involves factor XII that becomes activated to factor XIIa following contact with damaged endothelium. Factor XIIa catalyzes the activation of XI to factor XIa, which in turn activates factor IX to factor IXa, and factor X to factor Xa, which is the enzyme that converts prothrombin to thrombin. The extrinsic pathway begins with a protein called tissue factor (which is not a plasma protein). Tissue factor is located on the outer plasma membrane of various tissue cells including fibroblasts and other cells below the endothelium. Tissue factor binds to plasma protein factor VII, which is activated to factor VIIa, which in turn catalyzes the activation of factor X to Xa, and in turn factor IX.

The liver plays a role in clotting by producing many of the plasma clotting factors. The liver also produces bile salts that are important for the intestinal absorption of vitamin K. The liver requires vitamin K for the production of fibrinolytic proteins and several clotting factors (factors II, VII, IX and X).

Anti-clotting mechanisms

Anti-clotting mechanisms include factors that limit clot formation and the fibrinolytic system that dissolves the clot once it is formed. Mechanisms that limit clot formation include plasma proteins such as tissue factor pathway inhibitor (TFPI), protein C, protein S and antithrombin III.

TFPI is secreted mainly by endothelial cells and acts during the ignition phase of clotting. It binds to complexes between tissue factor and factor VIIa, inhibiting the ability of these complexes to generate factor Xa.

Thrombin can bind to an endothelial cell receptor called thrombomodulin, eliminating its clotproducing effects. The bound thrombin then binds to a particular plasma protein, protein C. The binding of thrombin activates protein C, which in combination with another plasma protein inactivates factors VIII and Va. (Thrombin directly activates factors VIII and V and indirectly inactivates them via protein C). Antithrombin can inactivate thrombin after binding to heparin. There is an endogenous heparin present on the surface of endothelial cells.

The fibrinolytic (thrombolytic) system contains a plasma proenzyme, plasminogen, which can be transformed to its active form by plasminogen activators. The active form of plasminogen is the enzyme plasmin. Once formed, plasmin digests fibrin thereby dissolving the clot. An example of a plasminogen activator is tissue plasminogen activator (t-PA), which is secreted by endothelial cells. During clotting, both plasminogen and t-PA bind to fibrin and become incorporated throughout the clot. t-PA is a weak enzyme that requires the presence of fibrin to catalyze the generation of plasmin from plasminogen.

Anti-clotting drugs

A brief summation of current drugs (aspirin, warfarin, heparin and streptokinase) used to inhibit blot clotting is included here to place in context the activity of nattokinase. Aspirin inhibits the cyclooxygenase enzyme, which, in turn, prevents the generation of prostaglandins and thromboxanes. Thromboxane A₂, which is produced by platelets, causes platelet activation and aggregation. Low doses of aspirin cause a steady state inhibition of platelet cyclooxygenase activity, which reduces platelet aggregation in the blood. Vitamin K is required for the synthesis of clotting factors by the liver. Drugs that interfere with the action of vitamin K are a class of pharmaceutical known as oral anticoagulants. The most well known is warfarin (Coumadin^{*}). Heparin, a naturally occurring endothelial cell co-factor for antithrombin III, can be administered as a drug which then binds to endothelial cells. Heparin facilitates the action of antithrombin III and reduces platelet function through inhibition of thrombin agonists. Plasminogen activators dissolve a clot after it is formed (known as thrombolytic therapy). Administration of t-PA or a proteolytic drug called streptokinase reduces the amount of tissue damage when injected into the blood within 3 hours of a heart attack or occlusive stroke.

TABLE 1

Author Year	Preparatio n Dose and duration	Subjects	Primary Endpoint	Main Results
Jeske et al. 2011	2,000 FU Single dose	n=18, men and women with cardiovascular disease	Reduction of C-Reactive Protein	C-Reactive Protein Levels decreased for those with elevated CRP levels (8-40 mg/L) at

				baseline
Sumi et al. 1998	6,400 FU/day 4- days	n=5 hypertensive people	Hypertension	Systolic and diastolic blood pressure decreased
Kim et al. 2008	2,000 FU/day 8- weeks	n=73, men and women, hypertensive 20-80 years old	Hypertension	Reduction is Systolic and Diastolic blood pressure and Renin, all compared to placebo
Krishnan Medical Association 2003	4,000 FU/day 4- weeks	n=20, men and women, various illnesses	Hypertension	Reduction in systolic blood pressure compared to baseline
Wu et al. 2009	8,000 FU/day 8 weeks	n=30, hypercholester olemia patients	Reduction of Cholesterol	Slight reduction in HDL-C and LDL-C
Ng et al. 2011	2,000 FU single dose	n=11, healthy men and women, 21-65 years old	Bioavailability	13.3±2.5 hour for peak blood concentration
Sumi et al. 1990	6,000 FU single dose	n=12, healthy men and women 21-55 years old	Fibrinolytic	Euglobulin lysis time reduced 2,4,8 hours after consumption compared to control. Euglobulin Fibrinolytic Activity increased 2,4,8,12 hours after consumption compared to control
Sumi & Maruyama 1998	6,000 FU single dose	n=5, healthy men and women, 51-86 years old	Fibrinolytic	Euglobulin Fibrinolytic Activity increased 4 to 8 hours after consumption compared to baseline. Fibrin degradation

				products increased 6,8 hours compared to baseline.
Sumi et al. (PART B) 1990	1300 FU 3x daily 8-days	n=7 healthy volunteers, 21- 55 years old	Fibrinolytic	Fibrin Degradation Products spiked on day 1, then decreased slowly over 8 days.
Hsia et al. 2009	4,000 FU/day 8- weeks	n=45, men and women 20-70 years of age	Fibrinolytic	Decrease in Plasma levels of Fibrinogen, factor VII and factor VIII in humans
Luchi et al. 2006	2,000 FU single dose	n=15, healthy men and women, 30-49 years old	Blood Viscosity	Increased blood flow in fingers and backs of hands compared to baseline, 80, 120, and 180 minutes after consumption
Ninomiya & Yamada 2008	Low dose group: 1700 FU/day High dose group: 3400 FU/day 26- weeks	2 dose groups, n=60 men and women (average 59 years old) on Warfarin	Side effects when taken with Warfarin	No adverse effects when taken with Warfarin
Sumi et al. 1996	21.8±5.5 CU/g single dose	5 volunteers, 51-86 years of age	Examine pro- urokinase activators in natto	The presence of a strong activity of pro-urokinase activator different from nattokinase was proved.
Japa Fujita et al. 1995	80 mg purified nattokinase /kg single dose	20 Male Wistar rats (250g) and male New Zealand White rabbits (2.5kg)	Bioavailability	Nattokinase is absorbed from the rat intestinal tract and cleaves fibrinogen in plasma after intra- duodenal administration of the enzyme.

Suzuki et al. 2003	NK of 50 or 100 CU/body 6- weeks	12 Male SD rats, 5 weeks old	Inhibit the progression of intimal thickening	Nattokinase did inhibit the progression of intimal thickening following endothelial injury in rat femoral artery
Hsu et al. 2009	N/A	Nattokinase	Degrade Amyloid Protein in vitro	Nattokinase does degrade Amyloid Protein in Vitro, could be useful in the treatment of amyloid-related diseases.
Jang et al. 2013	Nattokinase (50, 160, or 500 mg/kg) or Aspirin (30 mg/ kg) 1-week	Rats (n=8)/group	Compared to aspirin In vitro platelet aggregation and in vivo thrombosis	Nattokinase displayed excellent anti-platelet aggregation and anti-thrombotic activities in vitro and in vivo. It is suggested that nattokinase could be a good health functional food for the improvement of blood flow.
				Nattokinase and its fragments are
Fujita et al. 2011	0.2 mg/g diet, 2/6 mg/g diet, 0.2mg/g diet, 0.6 mg/g diet 3- weeks	SHR Rats, 63 total	Hypertension	different from each other in the mechanism to reduce hypertension. Nattokinase retained its protease activity after absorbance across the intestines, may decrease blood pressure through cleavage of fibrinogen in

				plasma.
Ero et al. 2008	0, 0.1, 0.2, 0.4, 0.8, 1.6, 10.0 and 25.0 FU/mL of either Nattokinase or NSK-SD® single dose	A 1-part to 9- part dilution of the working concentrations was made into a freshly thawed, 20- donor, normal human plasma (NHP) pool (Precision Biologic, Nova Scotia, Canada)	Differentiate beneficial characteristics	Nattokinase and NSK-SD® elicited varying degrees of effect in the coagulation profiling assays. Since Nattokinase and NSK-SD® act directly on the end- point of many clotting assays, the generation of fibrin strands, makes grading of these effects difficult, therefore chromogenic or immunologic assays were selected when possible.
Takaoka 2005	2,000 FU/day 1- week	n=2, man and woman with severely aggregated Red Blood Cells	Visual examination of disaggregation effects	Clearly visible disaggregation which remained for 7 days after consumption stopped
Takaoka 2005	4,000 FU single dose	n=10, men and women, 22-59 years old	Reduction in platelet aggregation	Ex-vivo ADP induced platelet aggregation down 50%; collagen induced aggregation no effect in 75% of the subjects

Takaoka 2004	4,000 FU single dose	n=9, subjects with spontaneous platelet aggregation caused by smoking or hyperlipidemia	Platelet aggregation	According to the previous report, it was confirmed that there was the strong inhibitory effect on platelet aggregation after 6 hours from ingestion of nattokinase (NSK- SD). In addition, inhibition of spontaneous aggregation was observed in most of the subjects also in this study.
Takaoka 2004	4,000 FU single dose	n=7 healthy subjects (6 males 28 – 59 years, 1 female : 27 years)	Platelet aggregation	With all the subjects, more than 50% of inhibitory action/rate were identified.
		Natto from Samejima Co. Ltd. In Japan, Swine pancreas trypsin, (DFP), (Neguvon), (ε-		Nattokinase was discovered to have strong fibrinolytic activity
Sumi et al. 1987	N/A	ACA), (t- AMCHA), human plasmin and urokinase, DL-Arg-pNA, various	Fibrolytic effects	
Japa	n Bio		e Lab	oratory
Fujita et al. 2004	N/A	Human PCI	Mechanism of action as a Protein C Inhibitor	PCI is more valued as an anti-DIC agent

Nakamura et al. 1992	N/A	subtilisin NAT	Nattokinase Gene Sequencing	Nattokinase is a serine protease with 275 amino acid residues and a molecular weight of 27,728 Daltons. Nattokinase is a member of the subtilisin family of enzymes and DNA sequencing shows 99.5 and 99.3% homology to subtilisin E and amylosacchariticus
Fujita et al. 1993	N/A	Nattokinase	Molecular Weight, SDS page	Nattokinase is a subtilisin-like protease rather than a plasmin-like protease enzyme
Fujita et al. 1995	Nattokinase in 0.02, 0.04 and 0.12 mcmol/kg (iv)	Male Wistar rats weighing 300g were used	Nattokinase will lyse thrombosis	Results imply that nattokinase may be safer than plasmin at an appropriate dose level
Fujita et al. 1995	N/A	Nattokinase	Fibrinolysis	Nattokinase is less sensitive on the cleavage of fibrinogen, but is more sensitive on the cleavage of cross-linked fibrin compared to plasmin
Sumi et al. 1992	N/A	SCIENC Nattokinase	Structure and Fibrinolytic Properties	The Structure and Fibrinolytic Properties of Nattokinase Were determined.
Urano et al. 2001	0.06-1 nM	Nattokinase	Plasminogen activator activity	Nattokinase is reported to degrade an important inhibitor of plasminogen activator activity.

Murakami et al. 2012	N/A	Nattokinase	Effect on Angiotensin I	Nattokinase is reported to inhibit the angiotensin- converting enzyme.
BILIS 1999	20,000 FU/kg of body weight (2000 mgs/kg) single dose	n=20 rats (10 males and 10 females, healthy, six weeks old)	Side Effects	No adverse effects observed
Bozo Research Center Inc. 2006	24,700 FU/KG & 49,400 FU/kg of body weight (1000 OR 2000 mgs/kg) single dose	n=24 rats (12 healthy males and 12 healthy females, all six weeks old)	Side Effects	No adverse effects were observed
Bozo Research Center Inc. 2004	Three oral doses of 100, 300 and 1000 mg/kg/day nattokinase (21,900 FU/g) for 90-days	n = 96 rats [4 groups of animals; consisted of 24 animals each: (12 males and 12 females)] all healthy, 5 weeks of age	Toxicity	No adverse effects were observed
Fuji Biomedix Co., Ltd. 2002	A dose of 167 mg/kg/day nattokinase (20,000 FU/g nattokinase; 3,340 FU/kg bw) for 28 days	n=24 rats, healthy, 6 weeks of age	Toxicity	No adverse effects were observed
Ogasawara Kazuya et al. 2006	2200 FU/day for 28-days	n=31 healthy men and women (20-64 years old; BMI between 18 and 28)	Safety	No adverse effects were observed

Fuji Biomedix Co., Ltd. 2003	Nattokinase was tested at 6 dose levels, the top level being 5,000 mcg/plate. 5+ months	The mutagenic potential of nattokinase (20,000 FU/g) was tested in five strains of bacteria: Salmonella typhimurium TA98, TA1537, TA100, TA1535 and Escherichia coli WP2uvrA.	Mutagenicity	Nattokinase was demonstrated to be non-mutagenic.
Fuji Biomedix Co., Ltd. 2003	NSK- SD (20,000 FU/g)	Used CHL/IU cells originating from the lung of a female Chinese hamster.	Safety	Did not produce chromosomal aberrations.
Gifu Research Laboratorie s, JBS Inc. 2003	7.55 x 108 CFU	n=20 mice (10 males and 10 females. ICR- strain; 5- weeks old))	Safety	No adverse effects were observed
Kang 2014	Nattokinase By Lotte:2000 FU Nattokinase by KPX: 2000 FU/day 4- weeks	n=42, men and women with high blood pressure risk	Hypertension	Nattokinase by Lotte using NSK-SD had drastic reduction of blood pressure compared to nattokinase by KPX
Kurosawa 2015	2,000 FU single dose	12 young males	Coagulation/ Fibrinolytic effects	D-dimer concentrations and blood fibrin/fibrinogen degradation products were elevated significantly after

				administration. Factor VIII activity declined, blood antithrombin concentration was higher, and activated partial thromboplastin time prolonged. Therefore, a single dose of nattokinase enhances fibrinolysis and anti-coagulation via several different pathways simultaneously
Hamaoka 2013	2,000 FU single dose	n=3	Thrombosis	Coagulability increased when not taking nattokinase, compared to not much change when taken nattokinase
Kowatari 2015	10,000FU/d ay and 2,000FU/da y 4-weeks	5 males, 6 females	Safety	No concern over the safety of the intake of 10,000FU/day for 4 weeks
Narisawa 2014	0.1mg/ml to 1.0mg/ml		Inhibition of Biofilm	Nattokinase was found to inhibit the sucrose-dependent biofilm formation of cariogenic streptococci. The presence of nattokinase resulted in the reduction of water- insoluble glucan
Lampe 2015			Toxicology	Animal and human studies suggest that the oral consumption of nattokinase is of low toxicological

				concern
Takabayash i	10- 1000FU/ml	n=12 patients undergoing nasal surgery	Nasal Polyp with CRSwNP	NK effectively shrinks the nasal polyp tissue through fibrin degradation and the viscosity of the nasal discharge and sputum from patients with CRSwNP and asthma
				The data suggest
Jensen 2016	2,000FU/da y 8-weeks	n=79 adults with high BP	Hypertension	that nattokinase consumption in a North American population is associated with beneficial changes to BP in a hypertensive population, indicating sex- specific mechanisms of action of nattokinase effect on von Willebrand
				factor and
Shelanski 2018	Cream containing 5% NSK-SD 3 24hour applications	n=10, healthy adults	Skin-Irritation - Topical Use	hypertension. After three 24-hour exposure sessions, the effect of NSK-SD on scarified skin was substantially greater than control but still possessed a low irritation potential .

Ried (Wakunaga) 2012	Garlic Supplement with Nattokinase (70mg) and L- Theanine/d ay 12 weeks	n-79 adults with uncontrolled systolic hypertension	Hypertension	Trial suggests that supplement garlic blend is an effective and tolerable treatment in uncontrolled hypertension, and may be considered as a safe adjunct treatment to conventional antihypertensive therapy.
Shelanski 2018	Cream containing 5% NSK-SD 24-hours	n= 61 females, 48 males	Skin Irritation (Topical - Safety Study)	NSK-SD was found to be neither a clinically significant skin irritant nor a skin sensitizer and is not contraindicated for usages entailing repeated applications on human skin under conditions appropriate for such products.
Yasso (MB Research) 2018	Cream containing 5% NSK-SD	n= 5 corneas (BCOP) ; 40 Eggs (CAMVA)	Eye-Irritation Test	The calculated In Vitro score of NSK- SD EL Cream is - 1.74; therefore, the test article is considered a mild irritant according to Gautheron et al. No category can be assigned regarding the UN GHS Category, as per the OECD T est Guideline No. 437.

Urano 2007	4,000 CFU/day 8 weeks	n = 45, slightly overweight individuals (BMI: 23-28)	Fibrinolytic	Fibrinolytic effect in NK group compared to Placebo group was not significant. However, when limited to participants with BMI higher than average (25), there was a significant decrease in PAI-1.
---------------	-----------------------------	---	--------------	---

References

Azuma, K. Study report confirming safety of intake of food containing nattokinase (NSK-SD) in adult male and female (JBSL 2015

BILIS 1999, *Final report: Single-oral dose toxicity study of biozyme NSK-FD powder in rats.*, Environmental Biological Life Science research Center, Inc.

Bozo Research Center, I. 2004, Report: 13-week oral toxicity study of Nattokinase DS (NSK-SD) in rats. B-5170.

Ero, M., Ng, C., Chou, R., Mihailovski, T., Ballard, C., Esplana, A., Harvey, N., & Lewis, B. A pilot study on the serum pharmacokinetics of nattokinase in humans following a single oral daily dose. 2011.

Ref Type: Unpublished Work

Ero, M. & Lewis, B. 2008, Coagulation profile of nattokinase. Machaon Diagnostics, Inc..

Fuji Biomedix., L. 2002, Final Report: Oral repeated dose 28-day toxicity study of Nattokinase DS in rats. FBM 02-2704 .

Fuji Biomedix., L. 2003a, Final Report: Reverse-Mutation Assay in bacteria. FBM 02-8766.

Fuji Biomedix., L. 2003b, Final Report: Chromosomal Aberration Test. FBM 02-8767.

Fujita, M., Hong, K., Ito, Y., Fujii, R., Kariya, K., & Nishimuro, S. 1995a. Thrombolytic effect of nattokinase on a chemically induced thrombosis model in rat. *Biol Pharm Bull*, 18, (10) 1387-1391 available from: PM:8593442

Fujita, M., Hong, K., Ito, Y., Misawa, S., Takeuchi, N., Kariya, K., & Nishimuro, S. 1995b. Transport of nattokinase across the rat intestinal tract. *Biol Pharm Bull*, 18, (9) 1194-1196 available from: PM:8845803

Fujita, M., Ito, Y., & Nishi 1995c. Characterization of nattokinase-degraded products from human fibrinogen or cross-linked fibrin. *Fibrinolysis*, 9, 157-164

Fujita, M., Nomura, K., Hong, K., Ito, Y., Asada, A., & Nishimuro, S. 1993. Purification and characterization of a strong fibrinolytic enzyme (nattokinase) in the vegetable cheese natto, a popular soybean fermented food in Japan. *Biochem Biophys Res Commun*, 197, (3) 1340-1347 available from: PM:8280151

Gitte, S., Lenniger, M., Ero, M., Benson, K. Consumption of nattokinase is associated with reduced blood pressure and von Willebrand factor, a cardiovascular risk marker: results from a randomized, double-blind, placebo-controlled, multicenter North American clinical trial, *Integrated Blood Pressure Control* 25-Oct-2016

Gitte, S. Effects of NSK-SD on Blood Pressure NIS Labs 2014

Iuchi, S., Dokai, H., & Shionoya, K. 2006. Improvement of blood flow increase by ingestion of NSK-II. *Food Style 21.*, 8,

Japan Biological Science Inc. 2003, Final report: pathogenicity study of nattokinasr DS (NSK-SD) producing bacteria in mice. JBS-03-MOPG-549.

Jehun, K. Anti-hypertension research for Nattokinase product of Lotte *Inje University Seoul Paik hospital Clinical Nutritional Institute* 2014

Jeske, W., Ng, C., Ballard, C., Harvey, N., Mihailovski, T., Lewis, B., & Ero, M. Evaluating the effects of nattokinasem on C-reactive protein levels in adults at risk for cardiovascular disease. 2011.

Ref Type: Unpublished Work

Kim, J.Y., Gum, S.N., Paik, J.K., Lim, H.H., Kim, K.C., Ogasawara, K., Inoue, K., Park, S., Jang, Y., & Lee, J.H. 2008. Effects of nattokinase on blood pressure: a randomized, controlled trial. *Hypertens.Res*, 31, (8) 1583-1588 available from: PM:18971533

Krishnan Medical Association SC. 2003, Effect of NSK-SD on blood pressure by oral administration.

Lampe, B., English, J. Toxicological assessment of nattokinase derived from Bacillus subtilis var. Natto *Food and Chemical Toxicology 2015*

Lloyd-Jones, D.M., Hong, Y., Labarthe, D., Mozaffarian, D., Appel, L.J., Van, H.L., Greenlund, K., Daniels, S., Nichol, G., Tomaselli, G.F., Arnett, D.K., Fonarow, G.C., Ho, P.M., Lauer, M.S., Masoudi, F.A., Robertson, R.M., Roger, V., Schwamm, L.H., Sorlie, P., Yancy, C.W., & Rosamond, W.D. 2010. Defining and setting national goals for cardiovascular health promotion and disease reduction: the American Heart Association's strategic Impact Goal through 2020 and beyond. *Circulation*, 121, (4) 586-613 available from: PM:20089546

MAFF. Ministry of Agriculture, Forestry and Fisheries Annual Report. 2011. http://www.maff.go.jp/e/index.html.

Ref Type: Online Source

Maruyama, M. & Sumi, H. 1998, "Effect of natto diet on blood pressure.," Japan Technology Transfer Association (JTTAS), pp. 1-3.

Nakamura, T., Yamagata, Y., & Ichishima, E. 1992. Nucleotide sequence of the subtilisin NAT gene, aprN, of Bacillus subtilis (natto). *Biosci Biotechnol Biochem*, 56, (11) 1869-1871 available from: PM:1369081

Narisawa, N., Kawasaki, Y., Nakashima, K., Abe, S., Torii, Y., & Takenaga, F. Interference Effects of Proteolytic Nattokinase on Biofilm Formation of Carcinogenic Streptococci. *Food Perservation Science* Vol. 40 No. 6 2014

Ninomiya, J. 2006, Clinical Study report: Investigative research for effects of ingestion of natural Super Kinase II; a nattokinase soft gel capsule. Japan Medical School.

Ogasawara, K., Iuchi, S., & Shionoya, K. 2006. Report of Research: an oral safety study of nattokinase containing food, Natural Super Kinase II: a randomized, placebo controlled, doubleblind study. *Progress in Medicine*, 26, (5) 5

Pais, E., Alexy, T., Holsworth, R.E., Jr., & Meiselman, H.J. 2006. Effects of nattokinase, a profibrinolytic enzyme, on red blood cell aggregation and whole blood viscosity. *Clin Hemorheol.Microcirc.*, 35, (1-2) 139-142 available from: PM:16899918

Pearson, T.A., Mensah, G.A., Alexander, R.W., Anderson, J.L., Cannon, R.O., III, Criqui, M., Fadl, Y.Y., Fortmann, S.P., Hong, Y., Myers, G.L., Rifai, N., Smith, S.C., Jr., Taubert, K., Tracy, R.P., & Vinicor, F. 2003. Markers of inflammation and cardiovascular disease: application to clinical and public health practice: A statement for healthcare professionals from the Centers for Disease Control and Prevention and the American Heart Association. *Circulation*, 107, (3) 499-511 available from: PM:12551878

Phang, M., Lazarus, S., Wood, L.G., & Garg, M. 2011. Diet and thrombosis risk: nutrients for prevention of thrombotic disease. *Semin.Thromb Hemost.*, 37, (3) 199-208 available from: PM:21455854

Shah, AB., Rawat, S., Mehta, S., Takaoka, S., Sato, K., & Ogasawara, K. 2004. An Open Clinical Pilot Study to Evaluate the Safety and Efficacy of Natto Kinaseas an Add-on Oral Fibrinolytic Agent Tolow Molecular Weight Heparin & Anti-plateletsin Acute Ischeamic Stroke. *Japanese Pharmacology & Therapeutics*, 32, (7) 437-445

Shelanski, J., Shelanski, S. Evaluation of the Skin-irritating Propensities of NSK-SD on Scarified Skin. Unpublished and completed by Product Investigations, Inc. 2018

Shelanski, S., Nicholson, J. Determination of the irritating and sensitizing properties of the fermented soybean extract "NSK-SD" on Human Skin. Unpublished and completed by Product Investigations, Inc. 2018

Sumi, H., Banba, T., & Krishimoto, N. 1996. Strong pro-urokinase activators proved in Japanese soybean cheese Natto. *Nippon Shokuhin Kagaku Kaishi*, 43, (10) 1124-1127

Sumi, H., Hamada, H., Nakanishi, K., & Hiratani, H. 1990. Enhancement of the fibrinolytic activity in plasma by oral administration of nattokinase. *Acta Haematol.*, 84, (3) 139-143 available from: PM:2123064

Sumi, H., Hamada, H., Tsushima, H., Mihara, H., & Muraki, H. 1987. A novel fibrinolytic enzyme (nattokinase) in the vegetable cheese Natto; a typical and popular soybean food in the Japanese diet. *Experientia*, 43, (10) 1110-1111 available from: PM:3478223

Sumi, H. & Maruyama, M. 1998, "Enhancement of fibrinolytic system and thrombolytic effect by natto diet," Japan Technology Transfer Association (JTTAS), pp. 5-10.

Suzuki, Y., Kondo, K., Matsumoto, Y., Zhao, B.Q., Otsuguro, K., Maeda, T., Tsukamoto, Y., Urano, T., & Umemura, K. 2003. Dietary supplementation of fermented soybean, natto, suppresses intimal thickening and modulates the lysis of mural thrombi after endothelial injury in rat femoral artery. *Life Sci*, 73, (10) 1289-1298 available from: PM:12850244

Takaoka, S. 2005, Platelet aggregation inhibitory effect of nattokinase (NSK); Studies by Dr Keiko Hoshi at St. Marianna University School of Medicine.

Takabayashi, T., Imoto, Y., Sakashita, M., Kato, Y., Tokunaga, T., Yoshida, K., Narita, N., Ishizuak, T., Fujieda, S. Nattokinase, profibrinolytic enzyme, effectively shrinks the nasal polyp tissue and decreases viscosity of mucus *Allergology International* 2017

Urano, T., Ihara, H., Umemura, K., Suzuki, Y., Oike, M., Akita, S., Tsukamoto, Y., Suzuki, I., & Takada, A. 2001. The profibrinolytic enzyme subtilisin NAT purified from Bacillus subtilis Cleaves and inactivates plasminogen activator inhibitor type 1. *J Biol Chem*, 276, (27) 24690-24696 available from: PM:11325965

Wu, DJ., Lin, CS., & Lee, MY. 2009. Lipid-lowering effect of nattokinase in patients with primary hypercholesterolemia. *Acta Cardiol Sin*, 25, 26-30

Japan Bio Science Laboratory